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Classification of occupational asthma (OA)

A generally accepted definition proposed in an authoritative text, Asthma in the Workplace1, 

has defined OA as “ variable airflow limitation and/or airway hyperresponsiveness due to 

exposure to a specific causal agent present in a particular work environment and not to 

stimuli encountered outside the workplace.” This definition of OA does not include 

workplace activation or exacerbation of pre-existing asthma symptoms, which is called 

work-aggravated asthma. OA can be further subclassified into two different types:

1. OA appearing after an asymptomatic latent period (during which immune 

sensitization is thought to develop), including (a) IgE-associated OA typically 

triggered by high molecular weight (HMW) protein antigens, and (b) IgE-

independent OA typically triggered by low molecular weight (LMW) chemicals 

(isocyanates, red cedar dust). This type is sometimes called immunological OA.

2. OA that appears after a single, or multiple, workplace exposure(s) to non-specific 

irritants at a high concentration. The term “reactive airways dysfunction syndrome” 
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or RADS has been coined to describe this type of OA. This type is sometimes 

called non-immunological OA. Since RADS is covered in detail in Chapter 7, it 

will not be covered in this chapter.

Clinical manifestations of OA

Symptoms and degree of severity

The clinical manifestations of occupational asthma are similar to those found in non-

occupational asthma, and patients present with varying degrees of disease severity. Mild 

cases may experience only episodic dry cough, chest tightness, and increased breathing 

effort at work. In more severe cases, symptoms can include wheezing, cough, chest 

tightness, shortness of breath, and dyspnea that persist away from the work environment. 

Some subjects may develop bronchitis, nocturnal awakening, or concomitant symptoms of 

rhinoconjunctivitis2.

Airway hyperresponsiveness

Nearly all asthmatics with active symptoms exhibit airway hyperresponsiveness (AHR), an 

exaggerated response to bronchoconstrictor stimuli, which can be assessed by 

pharmacologic testing (e.g., methacholine inhalation challenge) or non pharmacologic 

means (e.g., exercise challenge). In the general population, only about 50% of individuals 

with AHR have symptoms of respiratory disease3, but it does appear to be a risk factor for 

asthma, since it may precede development of asthma 4, 5. Although pre-existing airway 

hyperresponsiveness does not consistently predict development of OA caused by a 

sensitizer, a link between AHR and active symptoms of OA is firmly established,. Workers 

with OA often exhibit decreases or resolution of airway hyperresponsiveness corresponding 

with reduced or disappearance of symptoms following cessation of exposure to causative 

agents in the workplace 6.

Patterns of Asthmatic Responses

Three patterns of asthmatic response in workers with OA have been defined from decreases 

in FEV1 with time after antigen challenge during specific inhalation challenge (SIC) 

testing 7. The isolated immediate or early onset asthmatic reaction, which begins 

immediately and lasts for 1 – 2 hours is characterized by smooth muscle contraction and/or 

edema, and is not usually associated with inflammatory cells or increased airway 

hyperresponsiveness. Dual phase asthmatic responses are characterized by both an early and 

late phase bronchoconstriction interrupted by a recovery interval with the late response 

occurring 3 to 12 hours after challenge. The isolated late phase asthmatic response is almost 

always elicited by chemical sensitizers and rarely if ever associated with measurable specific 

IgE8. All late phase responses to specific sensitizers are associated with infiltration of 

eosinophils, basophils and/or neutrophils and increased airway hyperresponsiveness.

Chronic irreversible airflow obstruction observed in some workers with OA is believed to be 

associated with airway remodeling. Changes reflecting airway remodeling include loss of 

ciliated epithelial cells, increased mucus secretion by goblet cells, basement membrane 
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thickening due to subepithelial fibrosis with fibroblast and myelofibroblast activation, and 

hypertrophy of airway smooth muscle cells 6.

Workplace substances proven to be causative agents of OA

Compendia of more than 250 specific causative agents can be found in other publications or 

on special websites 9–12, and can be generally subdivided based on size, as HMW (>10,000 

Da) or LMW (<1000 Da). HMW allergens are macromolecules capable of inducing a 

specific IgE antibody response and are usually associated with workplace sensitization to 

animals, plants, and/or microorganisms. For some of the HMW agents, major and minor 

allergens have been purified, characterized and recombinantly cloned/expressed (e.g., wheat 

proteins, cow dander). Of some 189 reported HMW allergens, 56% have been confirmed by 

bronchial provocation tests.

HMW allergens that cause OA may possess functional characteristics (e.g. proteolytic 

activity) that promotes their allergenicity 13, 14. Other HMW allergens, (e.g., house dust 

mites), possess pattern recognition receptors capable of stimulating innate immune 

responses via toll receptors which may enhance their sensitizing potential 15. While most 

HMW occupational allergens are proteins, complex polysaccharides such as those contained 

in vegetable gums, may also cause OA.

Approximately 78 LMW chemicals have been described as causes of OA. Prominent LMW 

sensitizers include diisocyanates, acid anhydrides, amines, metals, therapeutic drugs, and 

reactive dyes12. Structural modeling of these chemicals suggest that certain characteristics, 

particularly the presence of two or more reactive nitrogen or oxygen containing functional 

groups, and the ability to conjugate with lysine, may be critical to OA pathogenesis 16. The 

reactive functional groups of isocyanate and other LMW asthma-causing chemicals are 

known to covalently bind to self macromolecules especially airway proteins such as human 

serum albumin, causing conformational changes, including formation of new antigenic 

determinants capable of triggering immune sensitization17.

Immune Mechanisms that Drive the Inflammatory Processes of OA

IgE mediated mechanisms

Specific IgE mediated sensitization to a workplace antigen accounts for 90% of cases of 

OA 18. In type I IgE-mediated hypersensitivity reactions, IgE antibodies bind to and cross-

link mast cell receptors, leading to degranulation and release of mediators that elicit 

asthmatic reactions in susceptible individuals. Respiratory sensitization occurs by inhalation 

of the substance, uptake by antigen presenting cells such as dendritic cells that process 

antigens and their migration to regional lymph nodes where antigen is presented to CD4+ T 

helper cells that initiate an immune response. The nature of the immune response is 

influenced by the cytokine milieu at the site of lymphocyte stimulation. Depending on host 

factors and the antigenic epitopes, helper T cells differentiate into subpopulations of effector 

cells that produce different cytokines. The two most polarized subsets are Th1 and Th2 cells. 

Interferon gamma is the principle effector cytokine produced by Th1 cells, which promotes 

isotype switching of B cells to immunoglobulin isotypes associated with phagocyte-
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dependent host reactions. Th2 cells produce three cytokines, IL-4, IL-5, and IL-13, shown to 

critically influence asthma pathogenesis in mouse models 19 and all of these are increased in 

asthmatic patients 20. IL-4 is essential for differentiation and expansion of Th2 cells, by 

upregulating the transcription factor GATA-3 in naive T cells21. IL-4 (together with IL-13) 

also promotes isotype switching from IgM to IgE production22 and promotes expression of 

both high and low affinity Fcε receptors 23. IL-5 regulates airway eosinophilia in asthma by 

promoting eosinophil differentiation, recruitment, activation and survival 24. In addition to 

promoting isotype switching to IgE, IL-13 also acts on airway epithelial cells and smooth 

muscle cells to effect airway remodeling and development of AHR 25. Despite the evidence 

linking these 3 cytokines to the pathogenesis of allergic bronchial asthma, clinical trials 

using neutralization of these cytokines for asthma immunotherapy have provided 

disappointing results 26–28. It seems probable that human asthma involves a greater variety 

of phenotypic subtypes than those discovered in mouse models. There is substantial 

evidence implicating contributions of a number of other T helper subsets, including Th9, 

Th17, Th25, as well as Th1, Th3, Tregs and iNKT cells, to inflammatory processes 

contributing to asthma aggravation and pathogenesis29.

The main feature of chronic OA caused by the prototypic LMW chemical sensitizer, toluene 

diisocyanate (TDI), is airway inflammation30. Bronchial biopsy studies in workers with TDI 

asthma reveal a mixed infiltrate of activated T cells, eosinophils, neutrophils and 

macrophages. It is noteworthy that despite the fact that specific IgE is detectable in only a 

minority of cases of diisocyanate-induced asthma (DA), the histopathologic findings are 

indistinguishable from those observed in subjects with allergic asthma31–33. Bronchial 

biopsies of workers after inhalation challenge with diisocyanates, however, failed to 

demonstrate expression of m-RNA for IgE epsilon chains and IL-4; further evidence against 

a role for IgE in this type of OA 34.

Cell mediated immune mechanisms

Alternative mechanisms have been invoked to explain chemically induced OA. Cell 

mediated immunity or delayed-type hypersensitivity has been postulated as a possible 

mechanism for isocyanate asthma; however, scientific evidence for this hypothesis is 

lacking. Anecdotal cases of concomitant contact dermatitis and OA to chemical causes of 

OA (e.g., ammonium persulfate in hair dressers) have been reported35. In addition, delayed 

patch testing responses were not identified in a study of workers with DA36. In one small 

study, hexamethylene diisocyanate (HDI)-conjugated epithelial cell proteins stimulated 

proliferation of peripheral mononuclear cells from workers with DA but not HDI-exposed 

non-asthmatic subjects37. However, in vitro lymphocyte proliferative responses to 

diisocyanate antigens have not been rigorously validated as predictors of DA.

Innate Responses

Non adaptive immune responses could play a role in chemically induced OA. Isocyanates 

may have intrinsic effects resulting in production of pro-inflammatory cytokines. For 

example, peripheral mononuclear cells challenged in vitro with diisocyanate-albumin 

conjugate antigens show enhanced release of histamine releasing factors and beta-

chemokines, particularly MCP-1 38. Furthermore, in vitro enhancement of diisocyanate-
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albumin conjugate-driven MCP-1 production by blood cells was found to be strongly 

associated with DA, and served as a diagnostic marker, identifying 79% of workers with 

DA, with 91% specificity 33. Wisnewski et al demonstrated that human PBMCs stimulated 

in vitro with HDI-albumin or control albumin antigens showed marked changes in gene/

protein expression that appeared to be specific for the isocyanate moiety. Significant 

changes were noted in lysosomal genes, as well as increased expression of chemokines 

including MIF and MCP-1 which attract mononuclear cells, chitinases (pattern-recognition 

receptors) and oxidized low-density lipoprotein (CD68)39. Other investigators studied the 

gene expression profile of macrophages derived from the THP-1 human cell line and 

cultured with solubilized HDI and identified altered expression of genes involved in 

detoxification, oxidative stress, cytokine signaling, and apoptosis 40. Thus there is ample 

evidence suggesting that isocyanate chemicals stimulate non adaptive immune responses 

which contribute to respiratory sensitization, airway inflammation and clinical expression of 

OA.

Skin exposure and OA

Although the respiratory tract has been the focus of most studies on occupational asthma, 

evidence is accumulating that the skin may also play an important role in pathogenesis, as an 

exposure route for initiating immune sensitization 41–50. This hypothesis of pathogenesis is 

similar to that of the “Atopic March”, and is supported by the identification of structural 

genes as determinants of severe atopic dermatitis, a condition associated with heightened 

asthma prevalence 51–54. It is theorized that once immune sensitization occurs via the skin, 

secondary respiratory tract exposure to exceedingly low levels (which would not trigger 

responses in non-sensitized workers) elicit airway inflammation and asthma 48.

Despite being long overlooked as a potential exposure route contributing to occupational 

asthma, the skin exposure is well recognized as a mechanism for inducing immune 

sensitization, including production of allergen-specific IgE molecules 55, 56. Uptake of small 

reactive chemicals as well as large protein molecules is well documented, and thought to 

involve specific dendritic cell populations that reside in the epidermal as well as the dermal 

layers of skin 57–59. Once skin dendritic cells become activated by allergen (to express 

appropriate receptors), a chemokine gradient directs them to draining lymph nodes 60, 61. 

The outcome of skin exposure varies for different chemicals. For example, skin exposure to 

some occupational chemicals induce strong TH-2 skewed responses, while others induce 

Th-1 skewed responses 62–64. Exposure dose further influences the outcome of skin 

exposure, which may be non-linear and/or paradoxically limited at higher doses 45, 47.

Increasing recognition of the potential for occupational skin exposure to contribute to 

occupational asthma has spawned the development of animal models to further investigate 

potential pathogenic mechanisms. Several different reports have confirmed the ability of 

major occupational allergens to induce systemic immune sensitization and exacerbate 

subsequent inflammatory responses to respiratory tract inflammation in animal 

models 41, 45–47, 50. In many of these studies, skin exposure has been found to be more 

“potent” than respiratory tract exposure for eliciting primary immune sensitization, 

providing further support for an important role in disease prevention.
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Non-Immunologic mechanisms

While the immune system clearly plays an important role in occupational asthma, it has been 

suggested that this response is a secondary phenomenon, rather than the underlying cause of 

disease 65, 66. It is theorized that the primary defect in asthma may relate to impaired 

“barrier” function of the epithelium, which allows greater access of environmental allergens, 

microorganisms, and toxicants, which in turn trigger allergic-type inflammation 67–70. 

Impaired barrier function may be due to internal (genetic), or external (occupational 

exposure) factors that modulate the normal epithelial damage-repair cycle of the human 

airways 71. A similar process has been shown to account for certain types of allergic skin 

disease (described above), supporting the overall concept of “barrier defect”-driven 

inflammation at epithelial cell surfaces 72.

Epithelial Injury-Repair

The airway epithelium constitutes the interface between the internal milieu of the lung and 

the external environment. As the first point of contact for respirable particles, vapors and 

aerosols, it is most susceptible to their damaging effects. As mentioned above, some 

compounds that cause occupational asthma are enzymes (e.g. detergents/baking allergens) 

capable of directly disrupting cell-cell or cell-matrix interactions, while other occupational 

allergens are intrinsically cytotoxic (diisocyanates, anhydrides)13, 16, 73–75. Damage to the 

airway epithelium stimulates cell turnover through a process that involves a number of 

autocrine growth factors as well as signals from the adjacent mesenchyme 76, 77. Epidermal 

growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor–beta, and 

their corresponding receptors, have emerged as critical mediators in this process 78–80. 

Increased expression of these and other growth factors (IGF, PDGF, NGF, VEGF) is 

observed in the airway epithelium of patients with active asthma 68, 81, 82. Continuing cycles 

of epithelial-damage and repair, as might be caused by occupational exposures, may create a 

chronic wound scenario, which may increase the potential for the development of allergic 

sensitization 68, 83, 84.

The Epithelial–Mesenchymal Trophic Unit (EMTU)

Opposing layers of epithelial and mesenchymal cells constitute trophic units in which the 

resident cells counter regulate eachother’s differentiation via secreted factors 85–87. The area 

between these two cell layers contains extracellular matrix and a network of nerve fibers 85. 

Dysregulation of the EMTU, in response to specific inhaled exposures, has been 

documented in non-human primate studies and postulated to explain pathologic changes 

associated with asthma, which occur at very early stages of disease 88–90. The effects of 

specific occupational exposures on epithelial-mesenchymal interactions in vivo remain 

unstudied, however, in vitro studies suggest a possible influence on critical epithelial 

signaling components 91, 92.

Remodeling of the airway Wall

It has been postulated that when epithelial injury and repair becomes a chronic cycle, the 

structure of the airway wall may become remodeled, further increasing the opportunity for 

tissue penetration by allergens/toxins/viruses 93, 94. Structural changes observed in 
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occupational asthma include, hyalinization/thickening of the laminar reticularis, increased 

numbers of myofibroblasts, and hypertrophy/metaplasia of smooth muscle and mucus cells, 

which may persist despite cessation of exposure 95–98. In animal models, profibrotic 

cytokines, especially IL-13, mediate many of these changes 99, 100. The appearance of 

remodeling during the natural history of occupational asthma remains unclear. However, in 

patients with environmental asthma, such architectural changes occur early in the course of 

disease and may precede inflammatory changes 101, 102.

Toxicity

Many of the compounds that cause occupational asthma are cytotoxic at relatively low 

doses, including the low molecular weight chemicals, isocyanates, acid anhydrides, acrylates 

and certain metals 74, 103–105. The immune response to these compounds has generally been 

studied independent of their toxicity, however, an inter-relationship between these effects 

may exist. The “danger” signals elicited by certain occupational exposures (or co-exposures) 

may play an important role in the development of specific immune responses 106–109.

Oxidative Stress

A number of different studies provide evidence of increased oxidative stress during asthma, 

both locally within the airways, as well as systemically 110–112. Exhaled breath condensate 

and broncho-alveolar lavage samples from affected individuals have been shown to contain 

increased levels of 8-isoprostane, and other well established maker of oxidative 

stress 113, 114. Peripherally, additional biomarkers of oxidative stress (superoxide anion 

generation, lipid peroxidation, total nitrates/nitrites, total protein carbonyls, and total protein 

sulfhydrils) may be increased, concomitant with decreased levels of specific anti-oxidants 

(superoxide dismutase, catalase activity, glutathione, and glutathione peroxidase activity, 

etc) 112, 115, 116. It remains unclear if increased levels of oxidative stress observed in 

asthmatic individuals is a cause of disease, or rather a result of ongoing inflammation in the 

airways, which itself produces reactive oxygen species. Regardless of the source, oxidative 

stress is thought to aggravate asthmatic airway inflammation via multiple mechanisms, 

including pro-inflammatory mediators, and effects on smooth muscle and mucus 

secretion 117–119.

The molecular mechanisms by which oxidative stress effect cellular responses are beginning 

to be deciphered. At low levels of oxidative stress, the transcription factor Nrf2 is released to 

the nucleus where it induces expression of >200 genes with anti-oxidant response elements 

in their promoters 120. When oxidative stress exceeds the protective capacity of Nrf2-

induced genes, additional intracellular cascades (MAPK, NF-kB) may be triggered, leading 

eventually to the expression of pro-inflammatory cytokines, chemokines and adhesion 

molecules 117, 121.

Certain exposures (diesel exhaust, ozone) are well-recognized for their ability to induce 

oxidative stress, and have been shown to act as adjuvants for the development of allergic-

type respiratory responses in animal models 122–126. Recent studies suggest that other 

important occupational exposures (isocyanates, chlorobenzene, cerium and silicon oxide 

constituents of nanoparticles) may also induce oxidative stress 74, 127–131.
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Thiol-redox homeostasis

Thiols, especially glutathione, play a major role in protecting the airway against oxidant 

damage 132, 133. Airway fluid thiol levels are normally maintained at high levels (>100 uM), 

greater than 10-fold above systemic blood levels, and are intimately connected to redox-

sensitive (pro-inflammatory) intracellular signaling cascades 134. In vivo animal models, and 

in vitro studies with human cells have demonstrated that isocyanate chemicals have marked 

effects on airway thiols 135, 136. Glutathione may be an especially critical target as its levels 

are known to modulate TH-1 vs. TH-2 priming by dendritic cells, and subsequent asthmatic 

response in animal models 137, 138. Human genetic studies that associate glutathione-

dependent enzymes polymorphisms (GST-P1, GST-M) with occupational and 

environmental asthma further support a potentially important role for airway thiols in 

asthma pathogenesis 139, 140.

Neurogenic inflammation

The airway wall is entwined with fibers from neurons, some of which penetrate the 

basement membrane, reaching into the epithelial cell layer, where they sense external 

signals via specific receptors, and secrete factors capable of eliciting inflammation and 

bronchoconstriction 141. Critical mediators include the neuropeptides, substance P (SP), 

neurokinins (NK), calcitonin gene-related and vasoactive intestinal peptides (GCRP and 

VIP), which trigger responses from immune, vascular and smooth muscle cells via specific 

receptors 142–144. Further cross-talk between neuronal and immune cells may be modulated 

through the epithelial-derived enzyme, NEP, which breaks down pro-inflammatory 

neuropeptides 145. Epithelial NEP activity can be further affected by occupational and/or 

environmental exposures 146, 147. Thus, neuronal cells produce potent mediators that may 

interact with other cell types to influence exposure-induced asthmatic responses.

A single neuronal receptor, TRPA1, which recognizes a wide variety of “noxious” stimuli, 

including occupational allergens (diisocyanates), environmental irritants (cigarette smoke, 

cholrine), and endogenous compounds (reactive oxygen/nitrogen species, arachodonic acid 

derivatives) has now been molecular cloned 148, 149. In animal studies, TRPA1 expression 

co-localizes with SP, NK, and GCRP in nerve fibers in the airways, and TRPA1 knockout 

mice exhibit reduced inflammation in an ovalbumin asthma model 150, 151. However, 

species differences in TRPA1 activation, as well as general innervation of the lung, are well 

noted, limiting translation of animal studies on airway neuroinflammation to human 

asthma 141, 152.

Genetic susceptibility factors for OA

OA syndromes, like non-occupational asthma, are likely polygenic disorders. Identification 

of specific genes that contribute to OA has been challenging because study populations are 

relatively smaller than those needed for genetic association studies. Genetic studies in OA to 

date can be categorized as: those associated with immunoregulation and innate immunity; 

those associated with Th2 immunity; and anti-oxidant enzyme genes.
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Genes Associated with immunoregulation and innate immunity

Candidate gene studies have been reported investigating associations between HLA Class II 

alleles or haplotypes and isocyanate induced OA. Bignon et al evaluated HLA class II 

DQA1, DQB1, DPB1, and DRB alleles and reported that confirmed DA was associated with 

DQB1*0503 and the allelic combination DQB1*0201/0301. The DQB1*0501 allele and the 

DQA1*0101-DQB1*0501-DR1 haplotype appeared to be protective as these were increased 

among healthy exposed controls and decreased in DA 153. These findings were confirmed in 

a second study 154. A single amino acid substitutions at residue 57 of aspartic acid in DQB1 

* 0503 was significantly increased in DA workers and negatively associated with a valine 

substitution at DQB1 * 0501155. However, these findings were not reproducible in a smaller 

US study, a European study of DA or a similar Korean study156, 157. In the latter Korean 

study, HLA DRB1*1501-DQB1*0602-DPB1*0501 haplotype was significantly increased in 

84 workers with TDI asthma compared with two asymptomatic comparator groups 157.

HLA associations have been identified with other chemical causes of OA. A higher 

frequency of HLA DQB1*0603 and DQB1*0302 alleles and a reduced frequency of the 

DQB1*0501 allele has been reported in western red cedar sawmill workers with DA when 

compared with healthy workers 158. Among chemical workers exposed to acid anhydride 

chemical sensitizers, HLA class II allele DQB1(*)0501 within DQ5 HLA was associated 

with specific IgE to at least one acid anhydride (AA) antigen 159.

Among 335 laboratory animal workers were genotyped for TLR4/8551 and TLR4/8851 

single nucleotide polymorphism (SNP) variants and workers with the TLR4 8851 G variant 

has reduced responsiveness to inhalation of endotoxin and were at higher risk for atopy and 

sensitization to laboratory animal allergens 160.

Th2 gene markers

Th2 cytokine gene polymorphisms of IL4 receptor alpha (IL4RA) and IL13 have been 

associated with allergic asthma and/or allergic sensitization 161. A candidate gene study was 

performed in 103 isocyanate exposed workers with DA confirmed by a positive SIC test, 

115 symptomatic workers with negative SIC tests, and 150 asymptomatic spray painters 

exposed to HDI. DNA was extracted and workers were genotyped for IL4RA (I50V), 

IL4RA (Q551R), IL4RA (E375A), IL13 (R110Q), and CD14 (C159T) SNPs. The 

interactions between diisocyanate exposure (HDI vs. MDI, TDI) and specific genotype 

combinations (i.e., IL4RA II + IL13 RR; IL4RA II + CD14 CT; and IL4RA II + IL13 RR + 

CD14 CT) were significantly associated with DA compared with SIC negative workers. 

When comparing HDI-exposed workers with DA (n=50) and a different comparator group 

of asymptomatic HDI-exposed workers (n = 150), the association between DA and the 

IL4RA II + CD14 CT and IL4RA II + IL13 RR + CD14 CT genotype combinations trended 

toward statistical significance (P <.10) after adjustment for relevant confounding 

variables161–163.

Anti-oxidant enzyme genes

Gene SNPs associated with the Mu (M), Theta (T), and Pi (P) classes of the glutathione-s-

transferase (GST) isoenzyme superfamily have been studied as predictors of DA. There is 
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good rationale to explore GST genotype variants in that GST has been shown to modify 

biotransformation of isocyanates and excretion of metabolic products 164. Reduced 

glutathione directly inhibits in vitro binding of diisocyanates with albumin 165. Deletion of 

the GSTM1 gene (null genotype) has been associated with a two-fold increased risk of 

diisocyanate-induced asthma140. The GSTP1 Val/Val homozygous genotype was lower in 

DA suggesting a protective modifying effect (OR, 0.23; P =.074)139.

Genome wide association studies have not been performed extensively in OA. Recently 

groups of Korean workers including 84 with TDI asthma and 263 unexposed controls 

underwent genotyping with GeneChip arrays consisting of 500,000 SNPs166. Several SNPs 

of the alpha-T-catenin (CTNNA3) gene were identified to be significantly associated with 

DA. Alpha-T-catenin is a molecule involved in E-cadherin mediated cellular adhesion. The 

significance of this finding is unknown.

Summary

Occupational asthma is one of the most common forms of work-related lung disease in all 

industrialized nations. The clinical management of patients with OA depends on an 

understanding of the multifactorial pathogenetic mechanisms that can contribute to this 

disease. Once established, the clinical manifestations of OA are similar to those found in 

non-occupational adult asthma, but the unique relationship of OA to a specific workplace 

antigen offers the possibility of successful therapy by early diagnosis and cessation of 

exposure to the causative agent. Specific IgE-mediated sensitization to high molecular 

weight antigens accounts accounts for 90 percent of cases of OA. Low molecular weight 

chemical sensitizers have generally not been found to cause OA by an IgE-mediated 

mechanism. Numerous factors have been found to contribute to the pathogenesis of 

chemically-induced OA, including innate immune mechanisms, and non-immunological 

mechanisms of epithelial injury, airway remodeling, oxidative stress, neurogenic 

inflammation, and genetic risk factors. Genes found to be associated with increased 

susceptibility to OA include HLA class II genes, and genes associated with innate immunity, 

Th2 immunity, and anti-oxidant enzyme genes.
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